
Yelp review - Distributed data ingestion, processing and
visualization pipeline

Anant Shukla
Concordia University
Montreal, Canada

me@anantshukla.com

Avni Gupta
Concordia University
Montreal, Canada

avni.gupta12@gmail.com

ABSTRACT
This report presents a detailed overview of our project— "Yelp
review - Distributed data ingestion, processing and visualization
pipeline". Leveraging Kubernetes clusters, we manage critical com-
ponents, including Apache Cassandra for robust NoSQL data stor-
age and Apache Airflow for orchestrating data pipelines. The sys-
tem seamlessly integrates with Apache Spark deployed on Google
Cloud for large-scale data processing. Notable distributed ssystem
features that were studied include fault detection, data replication,
auto-scaling, distributed system naming, and load balancing, en-
hancing system efficiency and effectiveness.

PVLDB Reference Format:
Anant Shukla and Avni Gupta. Yelp review - Distributed data ingestion,
processing and visualization pipeline. PVLDB, 14(1): XXX-XXX, 2020.
doi:XX.XX/XXX.XX

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/rohanchopra/dsd-project.

1 INTRODUCTION
We are planning to move and are in search of an apartment in North
America, prioritizing areas with numerous highly-rated restaurants.
Using the Yelp dataset we filter restaurants and determine the state
with the highest number of such establishments. Our final goal is to
pinpoint the area within the state that boasts the most highly-rated
restaurants so that we can start our apartment hunt.

Our distributed system, powered by Kubernetes clusters, man-
ages vital components — Apache Cassandra and Apache Airflow.
We have integrated our pipeline with Google Cloud’s DataProc
and have Apache Spark clusters created using spot instances for
large-scale data processing, our architecture ensures resilience. Re-
dundant computational units within Kubernetes enhance reliabil-
ity, exemplified by the meticulous data integrity measures in the
Apache Cassandra cluster. Transitioning to Google Cloud’s Dat-
aProc addresses resource constraints, with autoscaling optimizing
cluster sizes dynamically.

This report describes our system’s intricacies, emphasizing on
component roles and synergies. An externally configured ingress
controller on the Airflow cluster enables seamless external access,

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 1 ISSN 2150-8097.
doi:XX.XX/XXX.XX

while autoscaling implementations ensures cost-effective respon-
siveness. Additionally, we create an Apache Airflow orchestrated
data pipeline, with key features like fault detection, data replica-
tion, auto-scaling, distributed system naming, and load balancing,
enhancing overall system efficiency and effectiveness.

2 SYSTEM
Our distributed system is designed for strong resilience and fault
tolerance, to ensure high availability. This is accomplished by in-
corporating redundant computational units into the system’s archi-
tecture.

The foundation of our system lies in the utilization of two Ku-
bernetes clusters in the same region, each serving distinct purposes.
The first cluster is dedicated to hosting the Apache Cassandra data-
base, a highly available NoSQL database famous for its ability to
handle large amounts of data across multiple servers without a
single point of failure. The second cluster was created for Apache
Airflow which is an open-source platform designed to programmat-
ically create, schedule, and monitor workflows. It is particularly
famous for its capabilities in the field of data engineering, ETL
(Extract, Transform, Load) processes, and workflow automation.
We use Airflow to orchestrate Spark jobs being executed on the
DataProc cluster. Google Dataproc facilitats the deployment and
orchestration of Apache Spark and Apache Hadoop clusters. It of-
fers automatic cluster provisioning, autoscaling, and integration
with other GCP services, allowing efficient and scalable data pro-
cessing. Dataproc leverages open-source technologies, providing a
versatile and cost-effective solution for large-scale data analytics
and machine learning workloads.

To facilitate external access to the cluster services, an ingress
controller has beenmeticulously configured. This controller adeptly
maps requests from diverse applications to specific subdomains,
fostering seamless communication among these entities.

Autoscaling mechanisms have been deployed for both clusters,
with aminimum node count set at 3 and amaximum of 4 nodes. This
strategic configuration ensures that, in the event of CPU utilization
surpassing 70%, an additional node is dynamically instantiated, sub-
sequently decommissioned when CPU utilization descends below
50%. The imposed upper limit of 4 nodes is a deliberate decision
made in consideration of cost constraints.

The Cassandra database implementation demonstrates redun-
dancy and data integrity, utilizing 3 pods with each pod mounted
to a distinct persistent storage. The Cassandra setup carefully main-
tains a data replication factor of 3, thereby strengthening the system
against potential data loss.

Concurrently, the cluster dedicated to Apache Airflow is com-
posed of 3 nodes, steering our data engineering pipelines with

https://doi.org/XX.XX/XXX.XX
https://github.com/rohanchopra/dsd-project
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX


Figure 1: Broad System Architecture

finesse. This cluster further integrates with DataProc, a managed
and scalable service for executing Apache Spark jobs. The DataProc
cluster architecture encompasses 1 master node and 3 worker nodes,
harmoniously contributing to the overall efficiency and reliability
of our distributed system.

2.1 Dataset used
We used the Yelp dataset [2] which is a subset of their restaurant
and review data made public for academic use. It is in the JSON
format and covers businesses from various cities in North America.
This dataset contains five json files:

• Business.json - Contains business data including location
data, attributes, and categories.
Size - 118.86 MB

• Review.json - Contains full review text data including
the user_id of the user that wrote the review and the busi-
ness_id the review is written for.
Size - 5.34 GB

• User.json - User data including the user’s friend mapping
and all the metadata associated with the user.
Size - 3.36 GB

• Checkin.json - Check-ins on a business.
Size - 286.96 MB

• Tip.json - Tips written by a user on a business. Tips are
basically quick suggestions and not full reviews.
Size - 180.6 MB

2.2 Components
2.2.1 Kubernetes. Serving as our container orchestration platform,
Kubernetes ensures efficient deployment, scaling, and management
of applications across our distributed system.

In Kubernetes, service communication within a cluster is loosely
coupled. Control planes oversee API exposure and schedule com-
pute nodes’ initiation and shutdown based on desired configura-
tions. Compute nodes run Docker containers and communicate
with the control plane through the kubelet agent.

Kubernetes architecture facilitates loosely coupled service com-
munication within a cluster, where the control planes manage API
calls and schedule initiation and termination of nodes based on our
desired configurations. Each compute node runs Docker containers
which communicate with the control plane through the kubelet
agent. [6]

We use the Horizontal Pod Autoscaler (HPA) in Kubernetes to
automatically adjust the number of running pods based on observed
CPU or memory utilization. It ensures optimal resource allocation,
scaling the deployment horizontally to handle varying workloads.
HPA enhances system efficiency by dynamically adapting to chang-
ing demand, maintaining responsiveness [2].

2.2.2 Apache Airflow. Apache Airflow is an open-source platform
for orchestrating complex workflows and data processing pipelines.
It allows users to define, schedule, and monitor workflows as di-
rected acyclic graphs (DAGs), facilitating the automation and man-
agement of data workflows with extensibility and modularity. Facil-
itating the coordination of diverse tasks and data pipelines, Apache
Airflow is instrumental in managing workflows, and enhancing the
efficiency of our project. For our project we rely on two DAGs:

(1) The first dag creates a PySpark job that loads the raw data
and pushes it to Cassandra.

(2) The second DAG creates a PySpark job that reads data from
Cassandra, processes it and then pushes the processed data
back into Cassandra.

To get theses DAGs on the Airflow cluster we create a git-sync
sidecar container that pulls changes from our private GitHub repos-
itory.

2.2.3 Apache Spark. Apache Spark is utilized for large-scale data
processing and offers a distributed computing framework enabling
parallel task execution with fault-tolerant capabilities, enhancing
the scalability and effectiveness of our project. Its architecture lever-
ages Resilient Distributed Datasets (RDDs) for parallel operations,
overseen by a cluster manager. The driver program coordinates

2



Figure 2: Horizontal Pod Auto-scaling. [3]

tasks among worker nodes, ensuring efficient data processing. Ad-
ditionally, Spark’s implementation of in-memory processing signif-
icantly boosts the speed of our overall data processing operations.
[5]

We initially hosted our own Apache Spark infrastructure. How-
ever, to address resource and cost constraints, we transitioned to
Google Cloud’s DataProc, a managed and scalable service for run-
ning Apache Spark jobs.We connect our Sparkworkers with Google
Cloud storage and Cassandra cluster to allow seamless transfer of
data.

2.2.4 Apache Cassandra. Chosen for its robust features in data
replication and integrity, Apache Cassandra is a highly scalable,
distributed NoSQL database system designed for handling large
amounts of data across multiple commodity servers without a single
point of failure. It provides high availability and fault tolerance,
making it suitable for managing large-scale, decentralized data
storage and retrieval.

Each Cassandra pod is configured with 4 GB RAM and 1 virtual
core from the e2-standard-2 machine. Additionally, a 120GB SSD
persistent storage is allocated to each pod, chosen for its high I/O
speeds. With a minimum data replication of 3 times across the pods,
our system ensures resilience and mitigates the risk of data loss.

The choice of Cassandra was driven by its high portability, mak-
ing it compatible across various cloud environments and ensuring
cloud-agnostic deployment for our project. [4]

Figure 3: The basic structure of our Airflow Deployment. [1]

2.3 Data Pipeline
Refer [3], we’ve designed the data pipeline Directed Acyclic Graphs
to seamlessly run on Apache Airflow. These DAGs are scheduled
to execute automatically every Sunday, the DAG scans for data
changes and then performs the processing as needed. Users also
have the flexibility to trigger jobs manually through the Airflow
Web UI that has been exposed through a public URL.

When a job is initiated, Airflow utilizes the Kubernetes Executor
to execute the DAG. Kubernetes creates pods to start the task that
Airflow needs to execute. These pods then trigger PySpark jobs on
the Dataproc cluster and fetch periodic updates, including execution
statistics. All this data is stored in a Postgres database hosted on
the same cluster as Airflow.

Adhering to its requirements, Airflow dynamically employs the
Horizontal Pod Autoscaler to efficiently scale the number of pods
up or down based on execution demands, ensuring optimal resource
utilization.

2.4 Features
2.4.1 Fault Detection and Recovery. This feature involves the identi-
fication of faults or failures within a distributed system in real-time,
followed by the implementation of recovery mechanisms to restore
system functionality and minimize downtime.

Kubernetes, with its control planes, employs health checks to
detect faults in pods and nodes. It automatically initiates recov-
ery actions, such as rescheduling failed pods, ensuring continuous
operation. Apache Airflow, through its DAGs, incorporates error-
handling mechanisms and task retries, enhancing fault tolerance
and recovery in data processingworkflows. Spark uses RDDs, which
maintain fault tolerance by tracking lineage information. In the
event of node failures during processing, Spark can recompute
lost data partitions based on lineage information, ensuring fault
recovery and data consistency in distributed computations.

2.4.2 Data Replication and Consistency. Data replication ensures
redundancy by duplicating data across multiple nodes, while consis-
tency mechanisms maintain uniformity among replicas, preventing
inconsistencies in distributed databases or storage systems.

Apache Cassandra implements data replication across nodes to
ensure redundancy and fault tolerance. The replication factor of 3
is managed meticulously, preventing inconsistencies. Cassandra’s

3



consistency levels provide fine-grained control over the trade-off
between availability and data accuracy.

2.4.3 Auto Scaling. Auto-scaling dynamically adjusts the number
of resources, such as servers or virtual machines, based on demand,
ensuring efficient resource utilization and optimal performance
without manual intervention.

The HPA in Kubernetes dynamically adjusts the number of pod
replicas based on observed metrics. Configured with CPU or mem-
ory thresholds, it triggers pod scaling to meet demand. This auto-
scaling mechanism optimizes resource utilization and ensures re-
sponsiveness to varying workloads.

2.4.4 Distributed System Naming. Distributed system naming fo-
cuses on creating a coherent and unique naming scheme for system
components, enabling effective communication and identification
within the distributed architecture.

Kubernetes Objects like Services, Pods, Deployments, and State-
fulSets are labeled and named to facilitate efficient system iden-
tification and management. Labels and selectors enable targeted
communication and grouping, while Kubernetes DNS allows for
service discovery within the cluster.

2.4.5 Load Balancing. Load balancing distributes incoming net-
work traffic or computational tasks across multiple servers or re-
sources to optimize resource utilization, prevent bottlenecks, and
enhance system performance and responsiveness.

Kubernetes, functioning as a container orchestration platform,
inherently incorporates load-balancing mechanisms. The control
planes evenly distribute workloads among nodes, preventing re-
source bottlenecks. Kubernetes Services employs load balancing
for routing external requests to the appropriate pods, optimizing
overall system performance. To optimize and maintain load bal-
ancing we use the nginx-ingress controller, which provides layer-7
load balancing across various pods. Cassandra on the other hand
uses a round-robin mechanism to balance the workload among the
various Cassandra nodes.

3 DEMO SCENARIOS
The first part of this data pipeline is getting data from the Yelp API
and pushing it to a google cloud storage bucket. This happens every
week on Sunday and is abstracted out for this project. The rest of
the pipeline has a few different sub-parts:

(1) First, an Airflow DAG is run to create multiple PySpark
jobs that will read this raw data in the JSON format from
the cloud storage using Spark and push it to Cassandra.

(2) Next, another Airflow DAG is run to create a PySpark job
that will read the data from Cassandra, process it, extract
the essential features, and save it back to Cassandra.

(3) Finally, once the data is processed, the visualizations are
generated by fetching the data from Cassandra.

REFERENCES
[1] 2022. https://cwiki.apache.org/confluence/display/AIRFLOW/Drawio+Diagrams
[2] 2023. https://www.yelp.com/dataset
[3] 2023. https://kubernetes.io/docs/tasks/run-application/horizontal-pod-

autoscale/
[4] Jindal K Shah, Eliseo Marin-Rimoldi, Ryan Gotchy Mullen, Brian P Keene, Sandip

Khan, Andrew S Paluch, Neeraj Rai, Lucienne L Romanielo, Brian Rosch, Thomas

W Yoo, and Edward J Maginn. 2017. Cassandra: An open source Monte Carlo
package for molecular simulation. Journal of Computational Chemistry 38, 19
(2017), 1727–1739.

[5] The Apache Software Foundation. 2023. SparkR: R Front End for ’Apache Spark’.
https://www.apache.org https://spark.apache.org.

[6] The Kubernetes Authors. 2023. Kubernetes Documentation. https://kubernetes.
io/docs/. Accessed: December 17, 2023.

4

https://cwiki.apache.org/confluence/display/AIRFLOW/Drawio+Diagrams
https://www.yelp.com/dataset
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/
https://kubernetes.io/docs/

	Abstract
	1 Introduction
	2 System
	2.1 Dataset used
	2.2 Components
	2.3 Data Pipeline
	2.4 Features

	3 Demo scenarios
	References

