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ABSTRACT
The increasing prevalence of digital content consumption has
established video streaming as a predominant force, constitut-
ing a significant portion of global internet traffic. This upsurge
in demand necessitates adaptive bitrate streaming to ensure
seamless user experiences. Traditional fixed bitrate ladders of-
ten prove inadequate in adapting to diverse network conditions,
leading to the exploration of intelligent and context-aware solu-
tions. Our research introduces a Deep Reinforcement Learning
(DRL) approach for context-aware bitrate ladder construction,
considering both objective and subjective Quality of Experi-
ence (QoE) metrics.

The DRL algorithm undergoes training on video features, net-
work bandwidth, and storage costs, providing an adaptive
solution to varying content, network, and storage demands.
We compile a dataset of diverse high-resolution videos, evalu-
ate different video feature extraction techniques, and propose
a fused QoE metric. Our approach, which incorporates both
content and network awareness, aims to address the limita-
tions of fixed bitrate ladders, offering a more responsive and
optimized streaming experience.

The study outlines the system architecture and implementation
details, while discussing its limitations, paving the way for
future work in variable bitrate encoding and alternative DRL
architectures. In summary, our research contributes to the
advancement of understanding and implementation of context-
aware bitrate ladder construction in video streaming.
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1. INTRODUCTION
In the ever-expanding landscape of digital content consump-
tion, video streaming has emerged as a dominant force, com-
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CHI’20, April 25–30, 2020, Honolulu, HI, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-6708-0/20/04. . . $15.00

DOI: https://doi.org/10.1145/3313831.XXXXXXX

Category Downstream Traffic Share

Video Streaming 48.9%
Social Networking 19.3%
Web 13.1%
Messaging 6.7%
Gaming 4.3%
Marketplace 4.1%
Others 3.5%
Table 1. Mobile downstream traffic Q1 2021 [24]

manding a significant share of global internet traffic. With
the proliferation of high-speed internet and the ubiquity of
connected devices, users increasingly turn to adaptive bitrate
streaming to enjoy seamless video experiences. This surge in
demand has necessitated a paradigm shift in video delivery
mechanisms, requiring intelligent and context-aware solutions
to enhance user satisfaction and optimize network resources.

The exponential growth of video traffic on the internet is unde-
niable, with video streaming constituting a substantial portion
of the data transmitted across networks. According to Sand-
vine’s 2023 Global Internet Phenomena Report, video usage
grew by 24% in 2022, now representing 65% of all internet
traffic [2]. Whether for entertainment, education, or communi-
cation, users are drawn to the dynamic and engaging nature of
video content. This surge poses challenges to content delivery
networks (CDNs) and necessitates sophisticated strategies to
efficiently handle the diverse demands of a global audience.

According to Android Central’s report of September 2021,
streaming video consumes approximately 0.7GB per hour for
a 480p video, 1.5 GB per hour for 1080p, and 7.2 GB per
hour for a 4K stream [24]. At the heart of contemporary video
streaming is Adaptive Bitrate Streaming (ABR), a technology
designed to dynamically adjust the quality of video streams
based on the viewer’s network conditions. ABR algorithms
assess factors such as available bandwidth, device capabili-
ties, and network congestion to seamlessly switch between
different bitrate renditions, ensuring a smooth viewing experi-
ence. This dynamic adjustment, however, heavily relies on the
construction of a bitrate ladder.

The bitrate ladder is a crucial component of ABR, representing
a set of pre-encoded video versions at different quality levels.
Traditionally, these ladders are statically defined, offering a
fixed range of bitrates to accommodate various network con-
ditions. However, with the diverse array of devices, network

https://doi.org/10.1145/3313831.XXXXXXX


types, and user preferences, fixed bitrate ladders often fall
short of delivering optimal performance.

Fixed bitrate ladders encounter challenges in addressing the
intricacies of real-world scenarios. They struggle to adapt
to the unpredictable nature of network conditions, leading to
sub-optimal quality and buffering issues. Moreover, the static
nature of these ladders overlooks the content characteristics,
often resulting in inefficient utilization of available resources.

To overcome the limitations of fixed bitrate ladders, this re-
search proposes an approach leveraging DRL. By employing
DRL, we aim to construct bitrate ladders that are context-
aware, taking into account various factors such as video fea-
tures, quality metrics, video sizes, network conditions, and
the importance of storage costs. Our key contributions are as
follows:

• We curated a dataset comprising 80 high-resolution videos
spanning diverse genres, including Gaming, Music, Action,
News, Mixed Content, and Animation.

• We conducted a comprehensive analysis of various video
feature extraction techniques, assessing their impact on the
bitrate ladder constructed by the DRL algorithm.

• We trained a machine learning model to create a fused
QoE metric by combining Mean Opinion Score (MOS)
with objective QoE metrics (VMAF, SSIM, and PSNR) to
predict MOS for new datasets that have not been through
subjective tests.

• We systematically evaluated and compared the fused QoE
metric with VMAF to identify their impact on bitrate ladder
construction.

• We performed the training of a DRL algorithm to calculate
an optimal bitrate ladder, taking as input both video and
network characteristics, enabling the algorithm to learn
intricate patterns and correlations.

2. RELATED WORK
The majority of video streaming platforms adopt Adaptive Bi-
trate technologies such as Dynamic Adaptive Streaming over
HTTP (DASH) [15] and HTTP Live Streaming (HLS) [10]
to ensure Quality of Experience for viewers. In these tech-
nologies, content is divided into short segments (usually 4-10
seconds) and encoded into different bitrates. A manifest file
is created with video metadata, and each video is encoded
into different resolution-bitrate settings. Clients adaptively
select the optimal bitrate based on network conditions, ensur-
ing smooth playback with transitions between bitrates for a
seamless streaming experience.

The traditional approach to bitrate ladder construction involves
the use of fixed bitrate-resolution pairs [14], which are not
optimized for specific content. This "one-size-fits-all" ap-
proach has been commonly used to reduce streaming costs
and improve the quality of experience for end-users.

Numerous studies have focused on more efficient and content-
optimized methods for bitrate ladder construction. For exam-
ple, a method has been proposed that extracts spatio-temporal

features from uncompressed content and trains machine-
learning models to predict the Pareto front, resulting in a
significant reduction in computation required [12]. Angeliki
et al. proposed a machine learning-based scheme for pre-
dicting the bitrate ladder based on the content of the video
using two constituent models [13]. Another study conducted
a benchmark of several handcrafted and deep learning-based
approaches for predicting content-optimized bitrate ladders,
highlighting the growing interest in machine learning tech-
niques for this task [23]. In a blog post, the industrial leader
Netflix discussed the introduction of "shot-based encodes"
for 4K content, which involves optimizing the bitrate ladder
based on the specific characteristics of individual shots within
a video [4]. While all these solutions are content-aware, they
lack network awareness and are inefficient in adapting to rapid
network fluctuations, leading to sub-optimal streaming quality
during varying network speeds.

In contrast to content-aware bitrate ladders, context-aware
bitrate ladders take into account broader contextual factors,
including network conditions, device capabilities, and user
preferences. By incorporating information about the network’s
bandwidth, latency, and device capabilities, context-aware
bitrate ladders strive to deliver an optimized streaming ex-
perience tailored not only to the content being streamed but
also responsive to the dynamic conditions of the network and
user requirements. Hadi Amirpour et al. proposed optimizing
the bitrate ladder dynamically based on the context in which
the video is being viewed, providing the best possible quality
of experience for the viewer [9]. Another scheme for con-
structing context-aware bitrate ladders, DeepLadder, presents
a novel approach by integrating deep learning techniques into
bitrate ladder construction. Leveraging advanced neural net-
works, DeepLadder seeks to dynamically optimize the bitrate
ladder based not only on content characteristics but also on
contextual factors, ushering in a more adaptive and intelligent
streaming solution [11].

Our solution is both content-aware and network-aware;
therefore, it is inherently context-aware.

3. PROBLEM DESCRIPTION AND MOTIVATION
The focal point of this research is the generation of a context-
aware bitrate ladder, a pivotal element in Adaptive Bitrate
Streaming for video delivery. Unlike traditional fixed bitrate
ladders or content-aware approaches, the context-aware bitrate
ladder aims to dynamically optimize video streaming by con-
sidering a multitude of factors beyond content characteristics.

We analyzed two videos featuring disparate genres—an action-
packed fight scene and a music clip; evaluating their VMAF
at both 240p (Ref. Figure 1) and 1080p (Ref. Figure 2) resolu-
tions across various bitrates. Our findings revealed significant
differences in VMAF values for both videos at the same bitrate
and resolution, emphasizing that diverse content necessitates
different encoding bitrates.

As observed in Figure 3, we segmented a single video into
10-second segments and encoded all the segments with 720p
resolution and 100Kbps, 750Kbps, 285Kbps, and 7000Kbps.
There is a drastic variation in VMAF scores among the video



Figure 1. VMAF scores across bitrates for different video genres at 240p

Figure 2. VMAF scores across bitrates for different video genres at 1080p

Figure 3. Temporal Evolution of VMAF Scores Across Data Chunks

Figure 4. Broad System Architecture

segments, indicating that different portions of the video should
be encoded with different bitrates to achieve an overall optimal
QoE.

Intuitively, fluctuations in network conditions can impact
streaming performance; high bitrates may result in stalls dur-
ing poor network conditions, while low bitrates on a stable
network may compromise QoE. Recognizing this dependency
on network conditions, we incorporated diverse network traces
into the bitrate ladder construction. This ensures that the bi-
trate ladder is adaptive to varying network scenarios, contribut-
ing to a more robust and seamless streaming experience.

While existing context-aware approaches predominantly focus
on objective video metrics [11] in conjunction with network
conditions to construct a bitrate ladder, our innovative method-
ology takes a more comprehensive stance. We incorporate
both objective and subjective QoE metrics, alongside detailed
video frame features, to formulate a bitrate ladder. This holis-
tic approach aims to provide a more nuanced and adaptable
solution for optimizing streaming quality.

In essence, our findings underscore the importance of video
content features, prevailing network traffic capacities, and
the overall storage cost on demand when constructing an op-
timal bitrate ladder. Traditional heuristics often struggle to
adeptly integrate such metrics from diverse perspectives. In
contrast, we approach the bitrate ladder challenge as a sequen-
tial decision-making process, aligning with the principles of
reinforcement learning. Moreover, we leverage the power of
DRL because it excels in generalizing from raw, unprocessed
data without requiring manual engineering interventions.

4. SYSTEM ARCHITECTURE
Motivated by the analysis conducted, we propose a Deep
Reinforcement Learning algorithm for the construction of a
bitrate ladder. In this section, we present the overall system
architecture (Ref. Figure 4).

The bitrate ladder generation begins by segmenting the in-
put video, followed by the extraction of frames from each
segment. These frames undergo feature extraction using pre-
trained Convolutional Neural Network (CNN) models, and



Segment size Encoding time

3 sec 557 sec
7 sec 484 sec

Table 2. Encoding time for different segment duration

the resulting feature maps are stored in a Hierarchical Data
Format (HDF) for subsequent use in DRL.

Simultaneously, the video segments are downsampled into
various bitrate-resolution pairs, comprising six resolutions
(144p, 240p, 360p, 480p, 720p, 1080p) and nine bitrates (100,
300, 750, 1250, 1850, 2850, 4300, 5700, 7000) kbps. This
process yields a total of 54 video segments for each original
video segment. To assess QoE, metrics such as PSNR, SSIM,
and VMAF are extracted using the FFmpeg library. These
metrics are then combined with MOS to obtain a fused QoE
metric.

The Proximal Policy Optimization (PPO) [22] DRL algo-
rithm forms the core of our proposed system for bitrate ladder
construction. The DRL agent is designed to make sequential
decisions based on a set of inputs that collectively contribute
to the generation of an adaptive bitrate ladder. These inputs in-
clude video features and video QoE metrics, providing insights
into the perceptual quality of the encoded videos. Addition-
ally, network statistics are considered, reflecting the dynamic
conditions of the network, while storage weights account for
the overall storage cost implications. The DRL agent also
takes into consideration past actions, ensuring a sequential
and coherent decision-making process. By integrating these
diverse inputs, the DRL agent engages in a continuous learn-
ing process, dynamically adapting the bitrate ladder to varying
content, network, and storage demands. This adaptability and
responsiveness make the DRL-based system well-suited for
optimizing the streaming experience across a multitude of sce-
narios and conditions. The following subsections delve into
the specifics of how each input is processed and how the DRL
agent refines its decision-making over time.

4.1 Video input
To facilitate effective deep-learning training, a diverse and
comprehensive video dataset is essential for generalization.
Initially, we utilized two publicly available datasets [19] and
[25], but observed a lack of diversity in video content. Subse-
quently, we curated a set of 80 videos from various sources,
encompassing different genres such as Sports, Gaming, Mu-
sic, Action, News, Mixed Content, and Animation, all in high
resolution and bitrate.

To prepare the videos for experimentation, we employed the
FFmpeg library to convert them into DASH format. To ensure
a broad representation, each video was segmented into 10-
second chunks. We chose this segment size based on the
evaluation of FFmpeg’s encoding time (Ref. Table 2), finding
that smaller segment sizes significantly increased encoding
time. Refer Table 2, the encoding time for segments of 3
sec was 557 sec while for 7 sec segments was 484 sec which
is considerably less. Moreover, we realised that objective
QoE scores for smaller segments were lesser when compared
to bigger segment sizes. To validate our choice of a larger

Figure 5. Variation in VMAF across different video segment durations

segment size, we compared the VMAF values between 3-
second and 7-second segments. The evaluation revealed that
7-second segments provided superior VMAF values (Refer
Figure 5).

4.1.1 Video features
In the feature extraction phase, we employed state-of-the-art
CNNs to capture meaningful representations of video content.
The process involved extracting frames from video segments
using the FFmpeg library, which was then fed into pre-trained
image classifiers to generate feature maps. These feature maps
were subsequently saved in HDF for later integration into the
DRL model.

To ensure a comprehensive assessment, we experimented
with four distinct CNN models: ResNet50 V1, ResNet50 V2,
XceptionNet, and VGG. These models were selected for their
proven efficacy in handling image-related tasks. We changed
the last layer of VGG16 and ResNet50 V2 in order to get the
uniform set of features from all the CNN models. Later in
the study, we compared the performance of these models by
evaluating which CNN-generated features contributed to the
most effective construction of bitrate ladders for our videos.

4.1.2 Video QoE metrics
Video QoE metrics quantify the perceived quality of video
content and assess the fidelity of visual information. These
metrics provide a numerical representation of video quality,
aiding in the evaluation and comparison of different video
encoding and streaming methods.

To create a comprehensive dataset for analysis, each 10-second
video segment was downsampled into combination of resolu-
tion (144p, 240p, 360p, 480p, 720p, 1080p) and bitrate (100,
300, 750, 1250, 1850, 2850, 4300, 5700, 7000) kbps pair.
This resulted in 54 resolution-bitrate pairs for each video seg-
ment and in total 181,440 video segments for DRL training.
Subsequently, these segments were utilized for QoE metrics
calculations.

Subjective Video QoE Metrics: Subjective video QoE met-
rics involve human observers who assess video quality based



on their perception. Ratings are typically gathered through
subjective studies where viewers express their opinions on the
visual experience. These metrics are crucial for understanding
the end-user experience, capturing nuances that automated
algorithms might miss, and guiding the optimization of video
delivery systems. The major challenge in the collection of
subjective metrics is that they are resource-intensive and time-
consuming.

Objective Video QoE Metrics: Objective video QoE metrics
are computational algorithms designed to automatically evalu-
ate video QoE without human intervention. These metrics can
be obtained without human input and therefore are a valuable
tool for research. However, Objective metrics may not align
perfectly with human subjective assessments. Viewer pref-
erences, emotional engagement, and other subjective aspects
are challenging to quantify objectively. We generated three
metrics for the input videos -

• Structural Similarity Index [17]: SSIM measures the
perceived structural similarity between an original video
frame and a compressed frame. It evaluates the luminance,
contrast, and structure of the frame, aiming to mimic human
perception. The SSIM index ranges from -1 to 1, with 1
indicating perfect similarity.

• Peak Signal-to-noise Ratio [8]: PSNR quantifies the
ratio between the maximum possible signal strength and
the noise or distortion introduced during compression of
video. It is calculated using the mean squared error (MSE)
between the original and compressed signals. Higher PSNR
values indicate better quality, with a maximum value of
infinity.

• Video Multi-Method Assessment Fusion [20]: VMAF
was developed by Netflix and takes into account various
visual features and characteristics of the video to provide a
score that correlates well with human perception of video
quality. It uses a machine learning model that combines
multiple quality metrics.

In our study, we aimed to integrate both subjective and ob-
jective QoE for robust results. To achieve this, we fused
distortion-oriented and perception-oriented QoE metrics to
align with MOS for a video [6]. Facing the challenge of
lacking subjective scores for our test set, we addressed it by
leveraging a comprehensive video quality metric dataset from
Netflix [5]. This dataset comprises of 420 videos evaluated
by 65 subjects, yielding 9750 continuous-time and 9750 ret-
rospective subjective opinion scores along with associated
VMAF, SSIM, and PSNR scores. Content genres cover action,
documentary, sports, animation and video games and content
characteristics span diverse categories, including natural and
animated videos,

For metric fusion, we employed a ν-support vector regres-
sion (ν-SVR) model, trained to estimate QoE scores by uti-
lizing multiple metrics, namely PSNR, SSIM, and VMAF.
We utilized [5] for training the model. The ν-SVR model
involved three hyperparameters: ν , representing the propor-
tion of support vectors to total samples; C, the regularization
parameter on the loss function; and γ , the radius parameter

Figure 6. NN Architecture Overview

of the polynomial kernel. A grid search was used to find the
best values for hyperparameters with ν ∈ [0.01, 0.1, 0.5, 0.9]
C ∈ [2-5, 215] and γ ∈ [2-15, 23]. Grid search gave the best
parameters as: ν: 0.9, C: 32768 and γ: 0.0625 The model
was then trained with these hyperparameters and the trained
model was then applied to predict the quality scores for our
test dataset. We fed these scores as video QoE metric input to
the DRL.

Later in the study, we trained the DRL using VMAF as the
video quality metric and compared the output bitrate ladder
with the bitrate ladder generated using fused QoE scores [6].

4.2 Network statistics
We used network datasets to mimic real-life situations better.
This data includes over 3,000 network traces, lasting about 50
hours. We got these traces from different public datasets like
HSDPA [21], and FCC [1]. We split the data randomly into
two parts: 80% for teaching the computer system and 20% for
testing.

4.3 Storage weight
Storage weight depends on the preference of the content
provider. Some may give more weightage to the content qual-
ity and others to storage. We fixed the storage weight to 0.5 in
our experiments.

4.4 Neural Network Architecture
The neural network (NN) architecture is presented in Figure 6.

State For each video chunk t, we have the state space - St
= { Ft, Nt, Pt, w } where, Ft represents the video features,
Nt represents the network bandwidth, Pt represents the past
actions and w represents the storage cost weight.

Past Actions: Agent takes past action sequence Pt = { a0, ....,
at-1 } as input where ai is the action for video resolution i.

Reward rt: Given network condition C, we want to maximize
video QoE and bandwidth utilization and minimize the storage
cost.



rt = ∑
t
(at |C)U(at ,C)︸                  ︷︷                  ︸

Bandwidth Utilization

+∑
t
(at |C)Q(at)︸              ︷︷              ︸

Video Quality

−w∑
t

§z(at)/t︸         ︷︷         ︸
Storage Cost

U(at ,C) =

{
Br(at)/Ca=at Sz(at)≤Ca=at

1−Br(at)/Ca=at Sz(at)>Ca=at

U: Actual network utilization of the selected chunk size in the
current network state

Br(at): Bitrate for the picked chunks

Ca=at : Network bandwidth under all actions at

p(at |C): Probability that the chunk at being selected over the
given network condition C

Q: Expected video quality Q(at) selected by action sequence
{ a0, . . . , at-1 } for chunk {0, . . . , t}
Sz: Average chunk size for the action sequence { a0, . . . , at-1 }

5. IMPLEMENTATION
We utilized scikit-learn [18] to implement the ν-SVR model
[16], TensorFlow version 2.15 [3], and Keras [7] were used to
implement the DRL model. Additionally, pre-trained Neural
Network models from Keras, initially trained on ImageNet,
were used to extract features from the videos. FFmpeg was
used for video processing tasks like converting the videos to
DASH, downsampling, and extracting various QoE metrics
like VMAF, SSIM and PSNR. Model training was performed
on a high-speed cluster, and the computational resources in-
cluded 4 CPUs, each equipped with 8 cores, 32 GB RAM, and
an Nvidia Tesla P6 GPU.

Training duration was approximately 16 hours for 80,000
epochs for each DRL model, with this cost incurred solely in
the offline stage. Inference, carried out using the online model
takes 2-5 seconds.

6. RESULTS
We conducted training for the DRL model using all possible
combinations of input features extracted from four distinct
CNNs: ResNet50 V1, ResNet50 V2, VGG16, and Xception-
Net. Additionally, two QoE metrics, VMAF and fused QoE,
were deployed. This process resulted in the creation of eight
distinct trained models. We then evaluated the bitrate lad-
ders generated by the DRL models for all network traces used
during testing.

To contrast the bitrate ladders produced, we focused on
ResNet50 V1 and VMAF as the QoE metric for two distinct
networks. One network exhibited an average bandwidth of
2.7 Mbps, while the other had an average bandwidth of 4.6
Mbps (refer to Table 3 and Table 4). As anticipated, the bitrate
ladder generated in the low-bandwidth network featured lower
bitrates for resolutions compared to the corresponding reso-
lutions in the bitrate ladder for the high-bandwidth network,
where higher bitrates were observed.

Representation Resolution Encoding Bitrate (Kbps)

Rep #1 144 215.3
Rep #2 240 537.4
Rep #3 360 750.9
Rep #4 480 1177.7
Rep #5 720 964.3
Rep #6 1080 2031.4

Avg. Bandwidth 2.7 Mbps
Min Bandwidth 0.23 Mbps
Max Bandwidth 4.7 Mbps

Table 3. Computed Bitrate Ladder for a Low Bandwidth Network using
XceptionNet and VMAF score

Representation Resolution Encoding Bitrate (Kbps)

Rep #1 144 2864.3
Rep #2 240 2734.9
Rep #3 360 3122.9
Rep #4 480 2993.6
Rep #5 720 1335.1
Rep #6 1080 3252.3

Avg. Bandwidth 4.6 Mbps
Min Bandwidth 2.7 Mbps
Max Bandwidth 5.4 Mbps

Table 4. Computed Bitrate Ladder for a High Bandwidth Network using
XceptionNet and VMAF score

Another comparison was conducted, this time focusing on the
variation in bitrate ladders generated by the two QoE metrics:
VMAF and the fused QoE. For this comparison, we main-
tained the network configuration as network_norway_bus16
(high bandwidth) and ResNet50 V1 was used to extract the
video features. The observation revealed that the bitrate lad-
der constructed using the fused QoE metric exhibited a more
conservative approach in assigning bitrates to resolutions in
contrast to VMAF (refer to Table 5 and Table 6).

Furthermore, we conducted a comparison among the bitrate
ladders generated using the four CNNs: ResNet50 V1 (Refer
table 5), ResNet50 V2 (Refer table 7), VGG16 (Refer table
8), and XceptionNet (Refer table 4). This comparison was
performed while maintaining the same QoE metric and net-
work configuration. Unfortunately, no discernible conclusions
could be drawn from the analysis of the four bitrate ladders.
Further research will be conducted to delve deeper into this
analysis, and the results of the extended investigation will also
be reported.

7. LIMITATIONS
Due to the unavailability of subjective QoE metrics in our
DRL model’s training dataset, the ν-SVR was trained on a
different dataset. Achieving more robust results might have
been possible if the same dataset were used for training both
the ν-SVR and DRL. Moreover, our video training dataset for
the DRL model comprised 84 videos, which may be consid-
ered limited. A larger dataset could potentially enhance the
training accuracy and overall results.



Representation Resolution Encoding Bitrate (Kbps) VMAF

Rep #1 144 4286.9 24.27
Rep #2 240 4028.3 61.38
Rep #3 360 3123.0 77.52
Rep #4 480 2735.0 84.22
Rep #5 720 3640.3 88.42
Rep #6 1080 2864.3 89.51

Table 5. Encoding Bitrate and VMAF for Different Resolutions using
ResNet50V1 and VMAF score

Representation Resolution Encoding Bitrate (Kbps) VMAF

Rep #1 144 3252.312 23.944
Rep #2 240 3122.982 59.8
Rep #3 360 2864.323 77.528
Rep #4 480 1335.164 72.754
Rep #5 720 2734.993 88.4175
Rep #6 1080 2993.652 89.511

Table 6. Encoding Bitrate and VMAF for Different Resolutions using
ResNet50 v1 and Fused QoE score

Furthermore, owing to time constraints, the DRL model under-
went training for only 80,000 epochs. Extending the training
duration, preferably to around 1,000,000 epochs, is expected
to yield improved performance. Finally, the network datasets
used did not include traces for high bandwidth conditions,
which resulted in the creation of bitrate ladders that lack high
bitrates, such as 7000 Kbps. A more diverse dataset would be
used to address this limitation in future work, which would en-
hance the model’s ability to generalize and perform effectively
under a broader range of network conditions.

8. FUTURE WORK
The current research primarily focuses on constructing an op-
timal bitrate ladder using Constant Bitrate (CBR). In future
work, we aim to broaden this focus by incorporating vari-
able bitrate (VBR) encoding. Additionally, our research will
extend to evaluate the performance of alternative Deep Rein-
forcement Learning architectures for an optimal bitrate ladder
construction.

9. CONCLUSION
In conclusion, our research project has successfully imple-
mented a Context-Aware Bitrate Ladder Construction ap-
proach using Deep Reinforcement Learning. Going beyond
the consideration of objective Quality of Experience, our DRL
algorithm incorporates subjective QoE metrics in the construc-
tion of an optimal bitrate ladder considering the video features
and the available bandwidth, while minimizing the storage
cost.
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