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1. Abstract

The present era is characterized by famines and climate
changes, hence plant disease identification and classifica-
tion have become a necessity. Disease identification by do-
main experts is time-consuming and costly and cannot be
used on a global scale. Due to this, early identification and
classification of plant disease is an important research area.

This study uses three datasets that are distinct in size,
number of classes and captured in different environmental
conditions. Both Training from Scratch and Transfer Learn-
ing are explored. Three CNN models, VGG16, ResNet50,
and AlexNet are trained on the three datasets. Due to
the variety of challenges in different datasets, image pre-
processing techniques such as online and offline data aug-
mentation and image normalization have been used.

The study aims to compare the performance by using
metrics like time, loss and accuracy plots. Evaluation pa-
rameters used for comparison are Accuracy, Precision, Sen-
sitivity Recall, and F1 score.

2. Introduction

As the human population is increasing at an alarming
rate, the demand for agricultural products is also increas-
ing significantly. Agriculture is constantly affected by
pathogens such as viruses, bacteria, fungi and weeds that
cause production and economic losses [10]. Early disease
identification and classification helps in health monitoring
and taking preventive measures in minimizing the risk of
disease spreading and better yield [8].

Plant disease classification using artificial intelligence
can prove to be a better resort as it is inexpensive and scal-
able. Research in the area of deep learning has great poten-
tial in terms of increased accuracy [16]. This project aims to
classify a few diseases, affecting apple, tomato, blueberry,
cherry, corn, grape, orange, peach, potato, and strawberry
crops.

However, the main challenges faced in classification are

limited dataset availability, complex image backgrounds
with surrounding stems, their shades on leaves, and the
same disease on look-alike plants making it difficult to see
them apart [14]. Some of the datasets have low-quality im-
ages collected from the internet which are corrupted by im-
age watermarking and background conditions.

Some research has been done in order to deal with these
issues. Briefly, one study proposed combining WGAN-
GP with LSR to improve prediction accuracy and address
overfitting. They improved the accuracy by 24.4% as com-
pared to 20.2% using classic data augmentation and 22%
using synthetic samples without LSR. However, they re-
quired significant computational resources and suggested
that the problem can be addressed using pre-trained mod-
els [18] Another study proposed monitoring plants under
field conditions [22]. One used feature extracted from the
leaves of diseased plants [24]. Another research used neural
networks for the identification of morphological patterns of
leaf veins [23]. Most of the research is done on PlantVil-
lage dataset which is captured in a controlled lab environ-
ment. In this study, experiments have been conducted on
three datasets which were captured in different environmen-
tal conditions.

This study tries to address the issue by comparing the
results of various deep CNNs on image datasets. Chal-
lenges of low-image quality, complex image backgrounds
and availability of a small number of images were addressed
using various image preprocessing techniques. Hyperpa-
rameter tuning over batch size and the learning rate is also
done to come up with the parameters that give better results.
Additionally, the study tries to compare the results of trans-
fer learning with training from scratch.

The three datasets used are PlantVillage, PlantDoc, and
PlantaeK. The datasets are pre-processed to clean the input
images, decrease the resolution and enhance the variety of
input images wherever required. Then the datasets are fed to
various CNN models. The CNN models are chosen based
on their suitability to the problem domain and the size of
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the input dataset. The CNN models ResNet50, VGG16 and
AlexNet are selected for both transfer learning and training
from scratch.

The datasets are divided into train, validation and test
sets. Using the validation set ensures that the model per-
formance is evaluated during the training process. Ac-
curacy curves and loss curves of training and validation
datasets are compared to identify the problems of under-
fitting/overfitting wherever they surface. For the evaluation,
various metrics such as model training time, accuracy, pre-
cision, recall, F1 score, and confusion matrix are employed.

For visualization purposes, t-SNE distribution is plotted
to analyze the class distribution.

2.1. Literature Review and Related Work

Related work can be broadly classified into two cate-
gories: one is techniques for plant disease detection, and
second is datasets advancing research in plant disease de-
tection.

Researchers have used CNN architecture and its various
versions for the classification and identification of plant dis-
eases. Sunayana et al. [6] compared different CNN architec-
tures for disease detection in potato and mango leaves and
achieved 98.33% accuracy with AlexNet and 90.85% accu-
racy with a shallow CNN model. Guan et al. [27] used a
pre-trained VGG16 model to predict disease severity in ap-
ple plants and achieved a 90.40% accuracy. Jihen et al. [10]
used the LeNet model to accurately distinguish healthy and
diseased banana leaves, achieving a 99.72% accuracy. Man-
preet et al. [5] classified seven tomato diseases with an ac-
curacy of 98.8% using a pre-trained CNN-based architec-
ture known as Residual Network or generally known as
ResNet. Rahman et al. [15] proposed a fully-connected
deep learning-based network to distinguish Bacterial Spot,
Late Blight, and Septorial Spot disease from tomato leaf im-
ages with a 99.25% accuracy. Previous work by Sankaran
et al. [22] proposed the use of reliable sensors to monitor
health and diseases in plants under field conditions. How-
ever, this wasn’t a helpful idea due to the hardware cost and
lack of expertise to operate such sensors. In Patil et al. [24]
study, they extracted shape features for disease detection in
sugarcane leaves, which obtained a final mean accuracy of
98.60%. In a similar work, Patil et al. [20] used texture
features, i.e., inertia, homogeneity, and correlation obtained
by calculating the gray level co-occurrence matrix on the
image and color extraction for disease detection in maize
leaves. Recent work [23] has investigated neural networks
to identify morphological patterns in leaf veins. Similarly,
feature extraction and ensemble neural network (NNE) have
been used to diagnose tea leaf diseases with a final test ac-
curacy of 91% [12].

3. Methodology
3.1. Datasets

In this project, three different plant disease datasets were
selected to evaluate the model’s performance. The statis-
tical details of the datasets are present in the table below.
The lack of availability of sufficiently large-scale non-lab
datasets remains a major challenge. Datasets were selected
based on different number of classes and the variety of envi-
ronments they were collected. Figure.1 elaborates a sample
of the three selected datasets which gave a variety of results
during the training and testing phase.

Dataset Name No. of Total No. of Avg Images
Plants Images Classes /Class

PlantVillage 14 87000 38 2300
PlantDoc 13 2596 27 85
PlantaeK 8 2136 16 9-313

PlantVillage dataset [2] is one of the most common
publicly available datasets which are used by most re-
searchers. The PlantVillage dataset has the highest number
of images, and those images are taken in a controlled lab
environment. This implies all the images are kept inside the
lab and captured under good lighting conditions.

PlantDoc dataset [4] is a real-world crop image dataset,
and it is prepared by Indian institutes. The images are cap-
tured in natural lighting conditions in the fields. The dataset
has fewer images as compared to PlantVillage.

PlantaeK dataset [3] is taken from native plants of the
Kashmir region of India. The dataset is imbalanced and also
has fewer images. This dataset was captured in broad day-
light under auto mode with the Nikon D-SLR digital cam-
era. Those images are captured by an 18-55 mm lens and
are in JPG format.

Figure 1. Raw Images for all Datasets

As a preprocessing step, normalization values were cal-
culated for all the datasets. A separate utility script was used
to compute the average of the mean and standard deviation
of all the images in the dataset. After using these computed
values, better results were obtained. Further, online data
augmentation techniques were performed to increase the va-
riety of the images in the dataset. Augmentation included
resizing, RandomHorizontalFlip, and RandomRotation.

The PlantDoc and Plantaek gave poor training results be-
fore preprocessing. For PlantDoc, overfitting and underfit-
ting issues were faced. This was because several images



were not of good quality with overlapping text as shown in
Figure 2. Data cleaning was performed by deleting such
images. To increase the size and variety of images for train-
ing the model Random Noise, Horizontal Flip, and Random
Rotation were implemented as part of offline data augmen-
tation. This helped in decreasing overfitting and underfitting
issues.

Figure 2. Sample Images of PlantDoc Dataset

Plantaek had class imbalance as shown in Figure 3 and
the size of the dataset was 4.3 GB. To tackle this, image
compression of 70% and image resize of 1/4th was done
using Python Imaging Library while ensuring image quality
was not affected. In order to tackle class imbalance Random
Noise, Horizontal Flip, and Random Rotation were imple-
mented as part of offline data augmentation. After data aug-
mentation, it gave a good distribution of images per class as
shown in Figure 4, and better accuracy.

Figure 3. Class Distribution for Plantaek - Before Augmentation

Figure 4. Class Distribution for Plantaek - After Augmentation

The datasets were divided randomly into training, valida-
tion, and testing sets in the ratio of 70:20:10. The validation
set was used to validate the performance of the model dur-
ing training, which helped in tuning the hyperparameters of

the models accordingly.

3.2. CNN Models

CNN models used in this project were ResNet50,
AlexNet, and VGG16. The approaches used for training
the models are training from Scratch and Transfer Learn-
ing. The selected CNN models are recommended by many
researchers [21] for image classification and are also ap-
propriate for smaller dataset sizes. The models also differ in
depth and number of FLOPs. CNN models like MobileNet,
GoogleNet, and DenseNet are very dense and require larger
datasets. Therefore, they are not appropriate for plant dis-
ease classification problems.

The Residual network (ResNet) [19] benefits solving
complicated tasks and also increases detection accuracy.
ResNet tries to solve the difficulties in the training process
of deep CNN, the saturation, and the degradation of accu-
racy. ResNet50 is a residual network with 50 layers (48
convolutional layers, one MaxPool layer, and one average
pool layer). It has over 23 million trainable parameters and
it is a deeper model and therefore it was able to learn fea-
tures better.

VGG16 [11] is a 16 layers network with 13 convolu-
tional layers, 5Max Pooling layers, and 3 Dense layers. It
has 138M learnable parameters.

AlexNet is a deep neural network created in 2012 by
Alex Krizhevsky and it is an 8 layers network with 5 convo-
lutional layers, 3 max-pooling layers, 2 normalization lay-
ers, 2 fully connected layers, and 1 softmax layer. AlexNet
[9] has about 660K units, 61M parameters, and over 600M
connections.

Training a model from scratch requires a huge dataset
and a lot of time to train. A pre-trained model is preferred to
overcome the plant disease dataset’s limitations of smaller
dataset size. Transfer learning is a method in which pre-
trained models are reused for a new task instead of devel-
oping models from scratch. It trains the neural network that
has already been trained on different datasets. These mod-
els are trained on a large number of images and can im-
prove the accuracy of prediction. In this project, transfer
learning using deep tuning is implemented, because it gives
higher accuracy and takes less training time. In deep tun-
ing, weights are frozen for the entire network except for the
final fully connected layer. The last fully connected layer is
replaced with a new one with random weights and only the
fully connected layer is trained.

ResNet50 has a lower number of learnable parameters
and FLOPs than VGG16 though it is deeper. AlexNet is
the least deep network out of the three selected CNN mod-
els. However, the training time of ResNet50 was much
lesser than that of VGG16. VGG16 took almost double
the time than ResNet50 per epoch and three times the train-
ing time of AlexNet per epoch. For AlexNet number of



FLOPs is 7.25x108, for VGG16 it is 15.5x109 FLOPs [17]
and ResNet50 3.80x109 FLOPs [13]. Moreover, ResNet50
gave higher accuracy in almost all datasets.

3.3. Optimization Algorithm

For this project, Adam optimizer and Cross Entropy Loss
function were used. The learning rate was set to 0.001 and
a batch size of 32 was used. The training was done for 40
epochs. These values helped the models reach convergence
faster, with fewer oscillations.

For model validation, plots for accuracy and loss curves
were used. To compare the performance of the models, Ac-
curacy, Precision, Sensitivity Recall, and F1 score param-
eters were used. Accuracy [26] is the ratio of (TP+TN) /
TP+TN+FP+FN. Intuitively, accuracy gives us the percent-
age of instances that were correctly classified as in a cer-
tain class C along with images correctly classified as not
in C. Precision is the ratio of TP / (TP + FP). Precision is
intuitively the percentage of instances that were correctly
classified under a certain class C. Sensitivity Recall is the
ratio [25] of TP / (TP + FN). A recall is intuitively the per-
centage of instances of a certain class C that were classified
correctly. F1 Score can be interpreted as a harmonic mean
of the precision and recall, where a F1 score reaches its best
value at 1 and worst score at 0. F1 Score = 2 * ((Precision
* Recall) / (Precision + Recall)).

To visually analyze the performance of all the model
KPIs, confusion matrices were generated. This helped in
understanding how good the model is at differentiating in-
stances between different classes. For visualization, t-SNE
was implemented. t-SNE helps to visualize the distribu-
tion of instances as clusters of classes and see how good
the model is, in spacially separating the dataset.

4. Results
4.1. Experiment Setup

All the deep learning models were trained on Kaggle
P1000 GPU’s. Kaggle was selected as it provides 30 hours
of GPU per week and the dataset management on Kaggle
is much better as compared to other platforms like Google
Collab. In order to maintain a uniform comparison, templa-
tized notebooks were created, which help maintain consis-
tency between the results of each model and dataset.

The datasets were preprocessed and then divided into
training, validation, and test sets as described in Section
3.1. The selected learning rate, batch size, epoch count,
optimizer, and loss function for all models are discussed in
Section 3.3.

The training and validation sets were fed into CNN mod-
els as mentioned in Section 3.2. Accuracy and loss plots
were generated for both training and validation sets to com-
pare the performances. The test results were then compared

and visualized using various KPIs as discussed in Section
3.3. t-SNE was also implemented to visualize the distribu-
tion of instances as clusters of classes to understand how
well the model segregates the dataset into classes.

The hyperparameter tuning selection was taken as part
of hyperparameter optimization. These values helped the
models reach convergence faster, with fewer oscillations.

4.2. Experiment Results and Analysis

PlantVillage Dataset - For both learning from scratch
and transfer learning, the results of ResNet50 were higher
than other two architectures (Fig. 12). No underfitting or
overfitting was observed. Transfer learning performed good
for VGG16 as well. (Fig. 5) The training time for VGG16
was 9.17 hours, AlexNet 3.5 hours, and ResNet50 5.3 hours.

Figure 5. Accuracy comparison between the learning techniques

PlantaeK Dataset – This dataset had a huge class imbal-
ance. With the original dataset, very low accuracy was ob-
tained. After performing data augmentation and balancing
the classes both ResNet50 and VGG16 performed well. In
training from scratch, overfitting was observed with VGG16
(Fig. 13). AlexNet gave inferior results mostly due to the
larger filter kernels. (Fig. 6) The results of ResNet50 were
similar in training from scratch and transfer learning while
VGG16 performed a bit better in transfer learning.

Figure 6. Accuracy comparison for Plantaek Dataset



PlantDoc Dataset – PlantDoc was a very poor-quality
dataset. Even after performing preprocessing, the results
were not good with training from scratch. ResNet50 per-
formed better than AlexNet but VGG16 was very poor at
differentiating the features of the dataset and gave 3% accu-
racy. Overfitting was observed with ResNet50. With trans-
fer learning, ResNet50 and VGG16 gave better results than
training from scratch.

For all the datasets, the best results were obtained with
ResNet50, followed by VGG16 and then AlexNet. As cor-
roborated by the literature survey, the performance gener-
ally increases from AlexNet to VGG16 to ResNet50 [7].
This is because of the FLOPs calculated and the number
of learnable parameters to be computed. With observation,
better accuracy was obtained in deeper architectures.

AlexNet gave lower accuracy as it has a bigger kernel
size and the depth of this model is lesser than others, hence
it struggles to learn features from the training dataset.

The training time of ResNet50 was much lesser than
VGG16, even though it has a deeper architecture. This
was because VGG16 has more learnable parameters and
FLOPs. It was also observed that AlexNet needs more time
to achieve higher accuracy compared to its successors.

One point to be noted is, training VGG16 on the Plant-
Doc dataset was a failed attempt in training from scratch.
However, in transfer learning ResNet50 performs better af-
ter data argumentation and data cleaning.

Comparing the three datasets, all three models per-
formed better on the PlantVillage dataset as compared to
the other two datasets (Fig. 7). This was largely due to
the fact that the PlantVillage dataset had considerably large
number of input images and more distinguishable features.

Figure 7. Accuracy Comparison for ResNet50 in all datasets

The evaluation metrics for all models of training from
scratch and transfer learning are depicted in Table 1 and
Table 2 respectively

The confusion matrix (Fig. 8) depicts the actual class
vs predicted class by the model. The values in the diago-
nal are the ones where the predicted class was same as the
ground truth and the non diagonal non-zero values are the

Figure 8. Confusion Matrix for PlantaeK Dataset for ResNet50

ones where the model gave the wrong results.

Figure 9. t-SNE plots comparing Learning from scratch (L) and
Transfer Learning(R)

The t-SNE plot shows the data separability into clusters
of classes.

Comparison among datasets: For instance, in
ResNet50, the t-SNE plot has a cohort data pattern for
PlantVillage because the model performed well while it
showed a scattered pattern for PlantDoc as the model has
poor performance due to low-quality images which made it
difficult to distinguish the images. (Fig. 14)

Comparison among models: For example PlantaeK t-
SNE plots show that ResNet50 performed better than other
models as it has a consistent density of distribution. (Fig.
15)

Comparison with and without transfer learning: For
example, in the PlantVillage AlexNet t-SNE plot, the class
distribution is more distinguishable for transfer learning
which shows it was more accurate. (Fig. 9)

4.3. Hyperparameter Optimization

Hyperparameter tuning was done with learning rate:
0.001, 0.0001, 0.00001, and batch size: 8, 16, 32, 64. Tun-
ing was done on the PlantVillage dataset for the ResNet50
to check the variance of accuracy.



Model Metrics PlantVillage PlantDoc PlantaeK
ResNet50 VGG16 AlexNet ResNet50 VGG16 AlexNet ResNet50 VGG16 AlexNet

Test Accuracy 97.57 93.28 75.20 61.65 2.59 19.92 91.57 83.04 58.63
Precision 97.67 93.45 74.38 64.03 0.07 23.27 92.12 83.78 60.61
Sensitivity Recall 97.57 93.28 75.20 61.65 2.59 19.92 91.57 83.04 58.63
F1 Score 97.56 93.29 73.69 62.01 0.13 16.98 91.58 83.08 57.81

Table 1. Test Metrics for Training from Scratch

Model Metrics PlantVillage PlantDoc PlantaeK
ResNet50 AlexNet ResNet50 VGG16 ResNet50 VGG16

Test Accuracy 97.02 95.95 77.99 71.81 91.96 91.17
Precision 97.22 96.02 79.11 73.69 92.37 91.27
Sensitivity Recall 97.02 95.95 77.99 71.81 91.96 91.17
F1 score 97.01 95.91 77.74 72.16 91.96 91.17

Table 2. Test Metrics for Transfer Learning

Figure 10. Accuracy and Loss by varying learning rates

The rationale behind the learning rate chosen is that most
of the image classification problems use LR in the range 0.1
to 10−7 [1]. Similarly, as per research, the ideal batch size
should be 16-64. Analysis of model training performance
was done with smaller batch sizes.

Impact of varying learning rate: Learning rate was
varied by keeping batch size constant at 32. Best accuracy
was observed with LR = 0.0001. LR = 0.01 performed bet-
ter than LR = 0.00001 for the initial 9 epochs. However,
after the 9th epoch, the performance of LR = 0.00001 sur-
passed (Fig. 10). The oscillating curve of validation loss
(Fig. 10) for LR = 0.001 clearly indicates that the model is
not able to converge and is overshooting the minima. That
is why after 9 epochs model with LR = 0.00001 performs
better than the model with LR = 0.001. However, the train-
ing time was not affected by changing the learning rate.

The results of test accuracy are summarized in Table 3.
Impact of varying batch size: The batch size was var-

ied by keeping the learning rate constant at 0.001. Higher
the batch size better the accuracy (Fig. 11) and lower the
training time. The downside of using a smaller batch size

Learning rate (Batch size = 32)
0.001 0.0001 0.00001

Test Accuracy 90.05 96.77 94.10
Batch Size (Learning rate = 0.001)
8 16 32

Test Accuracy 75.37 85.26 87.36

Table 3. Test Accuracy by Varying Learning Rate and Batch size

is that the model is not guaranteed to converge to the global
optima. It will oscillate around the global optima as evident
from the zigzag loss curves.

Training time for batch sizes 8, 16, 32, and 64 were re-
spectively 75, 56, 51, and 48 minutes. This implies that
batch size of 8 took 1.5 times more time than batch size 64.

The results of test accuracy are summarized in Table 3.

Figure 11. Training Accuracy by varying Batch size

To summarize, models performed the best with the com-
bination of LR = 0.0001 with batch size 32 and the combi-
nation of batch size = 64 with LR = 0.001



4.4. Conclusion

The best results were given by ResNet50 on all 3
Datasets. Transfer Learning gave better performance than
training from scratch. PlantVillage dataset provided the best
results. This was largely due to the fact that the PlantVillage
dataset had considerably more input images and more dis-
tinguishable features.
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5. Appendix

Figure 12. Accuracy plots for ResNet50 and AlexNet

Figure 13. Loss values for VGG in Plantaek Dataset

Figure 14. Comparisons of Datasets on ResNet50. Plantaek(L),
PlantDoc(M), PlantVillage(R)

Figure 15. Comparisons of Models on the Plantaek Dataset.
AlexNet(L), ResNet50(M), VGG(R)
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